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LETTER TO THE EDITOR 

Some properties of free tensor potentials 

S C Lim 
Department of Physics, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia 

Received 7 January 1980 

Abstract. Free tensor potentials of arbitrary rank in covariant 'Gupta-Bleuler' and 
non-covariant 'Coulomb' gauges are shown to be unitarily equivalent as in the case of 
quantum electrodynamics. The corresponding Euclidean potentials can be constructed and 
some of their properties are discussed. 

The recent revival of interest in massless field theory of higher spin in both flat and 
curved space-time (see for examples Fronsdal 1978a, b, Fang and Fronsdal 1978, 
Berends et a1 1979, Curtright 1979) has motivated us to generalise our previous results 
on massless potentials, although in a different spirit. This short note can be considered 
as a supplement to our earlier papers (Lim 1979a, b), with the purpose of extending the 
results on free electromagnetic potentials and linearised gravitational potentials to the 
case of tensor potentials for massless particles with arbitrary integer spin. 

Following Strocchi and Wightman (1974), a local and covariant gauge for a rank-s 
tensor potential Agl"'I*s(x) is specified by {Ag""""s(x), X, ( a  , a ) ,  X'} where (. , a )  is an 
indefinite, non-degenerate, Hermitian sesquilinear form on a Hilbert space 2, %" c X 
is a closed subspace on which ( a  , a )  is semidefinite, and Aw1".ILs(x) is an operator-valued 
distribution in 2, satisfying a set of Wightman-like axioms. The two-point function 

.(x - y )  of Apl"'gs(x)  in a local covariant gauge (or Gupta-Bleuler gauge) is W" ... F,, V I  ... U 

not positive semidefinite and it contains gauge parameters. Denote by H the 
completion of the tensor-valued Schwartz test-function space Y(R4) x C4' with respect 
to the sesquilinear form 

(f, g )  = Ij fFl , . . l l .r(X) wgl"'~s'"l~''u E (X - y)gu,  ...,, d4x d4y. 
F I . . . F L s , Y l . . . V ,  

Define a closed subspace 

H' = C f ~ H ~ p f = p ~ ~ ~ ~ . . . ~ ~ . . , ~ , ( p ~  = 0 for any ,UI a.e. on C+} 

where f i s  the Fourier transform off and C+ is the mantle of the forward lightcone. The 
form ( a  , a ) ,  when restricted to H' ,  becomes positive semidefinite. The one-particle 
physical space Hc for the massless spin-s boson in covariant gauge is then given by the 
coinpletion of the quotient space H f / H " ,  where H" is the kernel of the restricted form. 

Note that H' is independent of gauge parameters, hence the physical equivalence of 
all covariant Gupta-Bleuler gauges for A g l " . g s ( ~ ) .  

The tensor potential in the non-covariant 'Coulomb' gauge AE1"'Fs(x) is specified by 
A ~ I " ' * s  (x) = 0 if any = 0 and 

. .  A~...I I . . . I .(~) = 0. 
ii 
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The corresponding one-particle space is given by the closed subspace 

Hc = W E  Hf~f,l.,,,s = 0 if any pLI = 0). 

The sesquilinear form (. , * >  is positive on Hc. 
The physical equivalence of the tensor potentials in these two gauges can be shown 

by establishing a unitary map between HG and Hc. Such a unitary map exists and is 
given by 

where Xc(,,,,.,,) denotes summation over all possible distinct combinations of indices 
( p l  . . . pl ) .  For example, for s = 3, 

The proof is similar to that for spin-1 and spin-2 cases. It can be shown by a 
straightforward calculation that ( y f ) p l  . . . ps = 0 if any pLI = 0. H” is the kernel of y 
since yh = O  implies h EH”, and Hc= yH’. y is well defined by restricting to the 
forward lightcone the Taylor expansion about p = 0. Hence y defines a unitary 
equivalence Hc = HG = H’IH‘’. 

The corresponding Euclidean tensor potential can be constructed as follows. The 
two-point Schwinger function Sil,..is,il,,,js is obtained by the following matrix trans- 
formation in addition to the usual analytic continuation to pure imaginary time: 

Sil.,.is, j l  .. . j ,  (XE - YE) = ~!;.‘;s7~?~~’us W ,  . . . l*r, . (f - Y, i(x0 - yo) ) ,  

where 

for odd s 2 1, and Zs denotes the symmetrised sum over all distinct combinations of 
indices (i lp1,  . . . , isps)  and Q1vl, . . . , jsvs),  and Btr  = 1 if i, = pr = 1, 2, 3, BY = i, and 
Bgl. = 0 otherwise. This B-matrix is required to change all g,, to 6, in the two-point 
function. If we assume that the tensor potential is traceless, then the additional terms 
&?ljgCL” contribute only contact terms consisting of the delta function and its derivatives 
to the two-point Schwinger function. The resulting S~l , , ,~s ,~l . . . js  is traceless. In order for 
the two-point Schwinger function to be positive semidefinite, certain conditions need to 
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be imposed on the gauge parameters in the two-point function. For example, in the case 
of electromagnetic potential in the covariant gauge, the Fourier transform of the 
two-point function is 

which is positive semidefinite only if the gauge parameter F(p’ , )  is a non-negative 
measurable function. We remark that there exists at least one such gauge, namely the 
analogue of the Feynman gauge in an electromagnetic potential, for which the two- 
point Schwinger function is positive semidefinite. 

The one-particle space K of the Euclidean tensor potential in covariant gauge can 
be defined as the completion of the real tensor-valued Schwartz test function space 
sP(W4)  X R4s with respect to the inner product 

4 4  (f, g)K = , C , f i ~ . . . i ~ ( X ~ ) S i , . . . i ~ , ; l . . . ~ ~ ( X E - Y ~ ) g ; ~ . . . j ~ ( Y ~ )  d XE d YE.  
I 1  ... Ir.11 ... I* 

The Euclidean tensor potential can be considered as the generalised Gaussian random 
tensor field over K with mean zero and covariance given by 

In contrast to H in the Minkowski region, K has a positive metric. 
The properties of the Euclidean tensor potential in covariant gauges is similar to the 

c2ses with s s 2. d does not satisfy the reflection property. Thus one cannot obtain a 
positive metric Hilbert space by the method of Osterwalder and Schrader (1973,1975), 
which agrees with the result in relativistic theory. If additional conditions are imposed 
on the gauge parameters so that the Fourier transform of the Schwinger function S(pE) 
has an inverse which is a polynomial in p’, and pz , ,  I = 1, . . . , s, then the Euclidean tensor 
potentials in these covariant gauges are Markovian in the sense of Nelson (1973a, b). 
Again we remark that for arbitrary integer spin s 3 3, there exists at least one gauge, the 
‘Feynman’ gauge, for which the Euclidean potential is Markovian. In this case 
S(pE) = (?pi2, where C is just a constant non-singular matrix so that S-‘(pE) =pgC- ’ .  

For the noncovariant ‘Coulomb’ gauge the Euclidean potential satisfies the follow- 
ing conditions: 

d:...l* = 0 if any ir = 4, 

and 

1 a i d ? i 2 . , . i s  (XE)  = 0. 
I 

The corresponding one-particle space is then given by the closed subspace 

Kc = K fl cf E KI f i , i  2 . . . i ,  = 0 and f i l . . . i ,  = 0 if any i l  = 4). 
I 

dc  differs from the potential in a covariant gauge for it is reflexive but fails to satisfy 
Nelson’s Markov property. However, it is Markovian with respect to special half- 
spaces or the Markov property of the second kind (Hegerfeldt 1974). A relativistic 
one-particle space with positive metric can be recovered from K C  by using the method 
of Osterwalder and Schrader. The proofs of these results follow closely those for spins 
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s G 2  (Lim 1979a, b). Finally we remark that in the Euclidean region, the closed 
subspace with zero divergence 

K' = cf E KI 1 & f l , , 2 . . . l s  = 01 
I 

does not enter the theory. It is necessary if the relation between d" and d is 
considered. A result similar to the relativistic case exists for the Euclidean potentials, 
namely 

Kc Kc  ze K '1 K" 

where K" is the subspace with vanishing norm, and KG can be taken as the 'Euclidean 
Physical Space'. 

Finally we remark that the above results may be generalised to a massless fieid 
curved space-time manifold in a non-trivial way. For example, the electromagnetic 
field in a smooth manifold can be considered as Ito's random current (Lim 1980, 
preprint in preparation). 
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